

HARDWARE MANUAL

FX_{1S} SERIES PROGRAMMABLE CONTROLLERS

Foreword

- This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX1S Series Programmable Controllers. It should be read and understood before attempting to install or use the unit.
- Further information can be found in the FX Series Programming Manual II.
- If in doubt at any stage of the installation of an FX1S Series Programmable Controller always consult a professional electrical engineer who is qualified and trained to the local and national standards which apply to the installation site.
- If in doubt about the operation or use of FX1S Series Programmable Controller please consult the nearest Mitsubisi Electric distributor.
- This manual is subject to change without notice.

FX₁₈ Series Programmable Controllers

Hardware Manual

Manual number: JY992D83901

Manual revision: B

Date : April 2000

Guidelines for the Safety of the User and Protection of the FX₁s.

This manual provides information for the use of the FX1s. The manual has been written to be used by trained and competent personnel. The definition of such a person or persons is as follows:

- a) Any engineer who is responsible for the planning, design and construction of automatic equipment using the product associated with this manual, should be of a competent nature, trained and qualified to the local and national standards required to fulfill that role. These engineers should be fully aware of all aspects of safety with regards to automated equipment.
- b) Any commissioning or service engineer must be of a competent nature, trained and qualified to the local and national standards required to fulfill that job. These engineers should also be trained in the use and maintenance of the completed product. This includes being completely familiar with all associated documentation for said product. All maintenance should be carried out in accordance with established safety practices.
- c) All operators of the completed equipment should be trained to use that product in a safe and coordinated manner in compliance to established safety practices. The operators should also be familiar with documentation which is connected with the actual operation of the completed equipment.

Note: The term 'completed equipment' refers to a third party constructed device which contains or uses the product associated with this manual.

Note's on the Symbology Used in this Manual

At various times through out this manual certain symbols will be used to highlight points of information which are intended to ensure the users personal safety and protect the integrity of equipment. Whenever any of the following symbols are encountered its associated note must be read and understood. Each of the symbols used will now be listed with a brief description of its meaning.

Hardware Warnings

1) Indicates that the identified danger **WILL** cause physical and property damage.

2) Indicates that the identified danger could **POSSIBLY** cause physical and property damage.

3) Indicates a point of further interest or further explanation.

Software Warnings

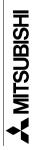
4) Indicates special care must be taken when using this element of software.

5) Indicates a special point which the user of the associate software element should be aware.

6) Indicates a point of interest or further explanation.

- Under no circumstances will Mitsubishi Electric be liable responsible for any consequential damage that may arise as a result of the installation or use of this equipment.
- All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for
 actual use of the product based on these illustrative examples.
- Owing to the very great variety in possible application of this equipment, you must satisfy
 yourself as to its suitability for your specific application.

Table of Contents


Guideline	ii
1. Introduction	1-3 1-4 1-4 1-5 1-6
Terminal layouts	2-1
3. Installation notes 3.1 Product Outline 3.2 FX1s RUN/STOP Control 3.3 General Specifications 3.4 PLC Mounting Arrangements 3.5 DIN Rail Mounting 3.6 Termination of Screw Terminals	3-2 3-3 3-4 3-5 3-6
5.0 Termination of Ociew Terminals	5-0

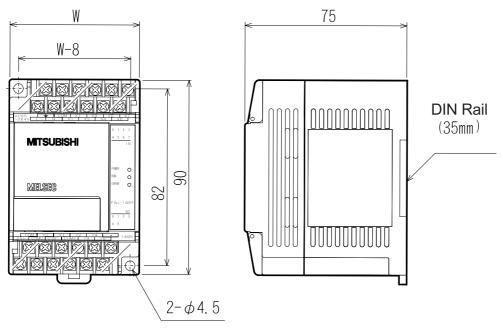
4.	Pov	wer supply	4-1
	4.1	Wiring Cautions	4-1
	4.2	Wiring Techniques	4-1
	4.3	Power Supply	
	4.4	Power Supply Characteristics	
	4.5	Earth/Grounding	
5.	Inpu	outs	5-1
	5.1	24V DC Input Specifications	5-1
	5.1	1.1 Typical Wiring	5-2
	5.1		
	5.1	1.3 Diodes and Inputs Connected in Series;	5-3
	5.1	1.4 Resistors and Inputs Connected in Parallel;	5-4
6.	Out	ıtputs	6-1
		•	
	6.1		
	6.1		
	6.1		
	6.2	•	
	6.3	·	
	6.2	Annlying Safe Loads	

7. Di	viagnostics	7-1
	Preliminary Checks	
	7.1.1 ERRÓR LED ON (CPU ERROR)	
	Common errors	
7.3	Maintenance	7-3
7.4	Operation and Error Flags	7-4
7.5	Error Registers	7-5
7.6	Error Codes	7-7
7.7	Instruction List	7-8
7.8	Device List	7-11

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics

1. Introduction

This manual covers the hardware installation instructions for the FX₁s Series Programmable Logic Controller.


Table 1.1 : Relay Output Units

WARE	IN	PUT	OUT OUT		POWER	DIMENSIONS			MASS	
MODEL	QTY	TYPE	QTY	TYPE	SUPPLY	mm (inches)			(WEIGHT) kg (lbs)	
FX1S-10MR-ES/UL	6		4			60			0.3 (0.66)	
FX1S-14MR-ES/UL	8	24V DC	6			(2.4)			0.5 (0.00)	
FX1S-20MR-ES/UL	12	Sink / Source	8	Relay	85 - 264 VAC	75 (3.0)	90 (3.5)	75 (3.0)	0.4 (0.88)	
FX1S-30MR-ES/UL	16		14			100 (3.9)			0.45 (0.99)	

Table 1.2: Transistor Output Units

MODEL	IN	PUT	OUTPUT		POWER	DIMENSIONS			MASS	
MODEL	QTY	TYPE	QTY	TYPE	SUPPLY	mm (inches)		es)	(WEIGHT) kg (lbs)	
FX1S-10MT-ESS/UL	6		4			60			0.3	
FX1S-14MT-ESS/UL	8	24V DC	6			(2.4)			(0.66)	
FX1S-20MT-ESS/UL	12	Sink / Source	8	Transistor (Source)	85 - 264 VAC	75 (3.0)	90 (3.5)	75 (3.0)	0.4 (0.88)	
FX1S-30MT-ESS/UL	16		14			100 (3.9)			0.45 (0.99)	

The distance between the vertical centerlines is 8mm (0.31") less than the width of the unit Please see previous page for each model's width measurement.

1.1 Model name

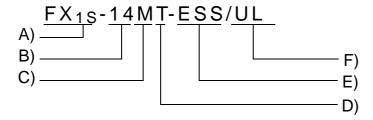


Table 1.3 : Model Table

A)		PLC type : FX1S
В)		Total number of I / O channels
C)		Unit type
Ο,	М	MPU - main unit
		Output type
D)	R	Relay
	Т	Transistor

		Features
	Omit	AC, Japanese specification
	D	24V DC Japanese specification
	DS	24V DC World specification
E)	DSS	24V DC World specification, DC source transistor
	ES	AC Power Supply World specification
	ESS	AC Power Supply World specification, DC source transistor
	UA1	AC Power Supply, AC inputs
F)	UL	CE,UL registered product

1.2 World Specification

Table 1.4: World / Japanese Specifications

Input Sink / Source	World spec models : SINK / SOURCE Japanese models : ALWAYS SINK
Outputs Transistor	World spec models : ALWAYS SOURCE Japanese models : ALWAYS SINK

1.3 Serial Numbers

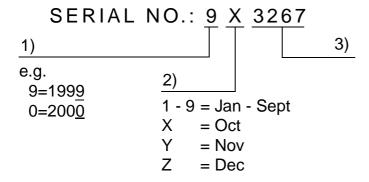
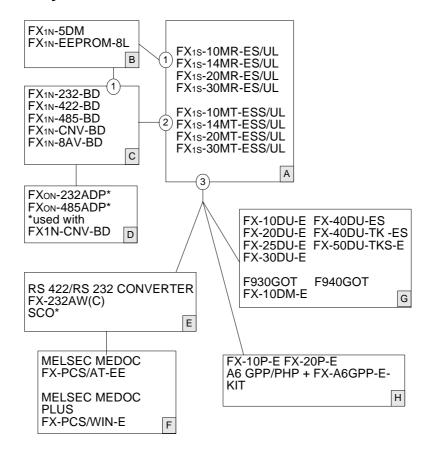



Table 1.5 : Notes on Serial Numbers

1)	Production year
2)	Production month
3)	Production serial number

1.4 Configuration

Figure 1.2: Schematic system

1.4.1 Unit accessories

Table 1.6 : Configuration Notes

Α	FX _{1S} Controller Main Body
В	FX _{1N} Memory Cassette or Display Unit
С	FX _{1N} Expansion Boards
D	FXon Network Adaptors
Е	Programming Cables
F	Programming Software
G	HMI Devices, F900 GOT and FX-DU Series
Η	Dedicated Programming Tools

Table 1.7: Connection Ports

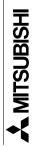
1	Memory Port
2	Extension Board Port
3	Programming Port

1.4.2 Rules for Expansion

The FX1S Series can:

- Use one expansion unit or board per square B, C, and G concurrently.
- The FX1S can supply 400mA at 24V DC.

The FX1S cannot:

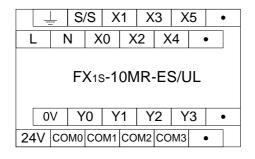

- Be expanded by the use of Special Funcion Blocks.
- Supply a 5V DC service supply.
- Use FX₁N-422-BD + FX-2PIF.
- Use the FX_{1N}-5DM and the FX-10DM concurrently.
- Use more than one FX-10DM at the same time. For example, the configuration FX-10DM + (FX₁N-422-BD + FX-10DM) is not allowed.

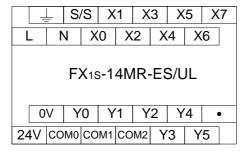
1.5 EEProm Backup Data

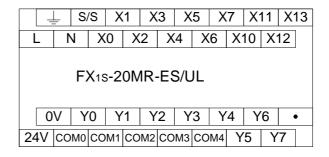
FX₁s existing data will be kept for 5 minutes during power down before the data is lost.

The capacitor backed memory will retain programs for 10 days and the capacitor requires 30 minutes to recharge upon powerup.

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics




2. Terminal layouts


The following selection of terminal layouts are taken from the FX₁s product range. Note: All layouts are diagrammatic only and are intended to aid the creation of wiring diagrams.

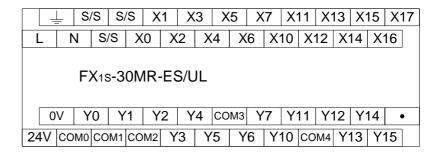
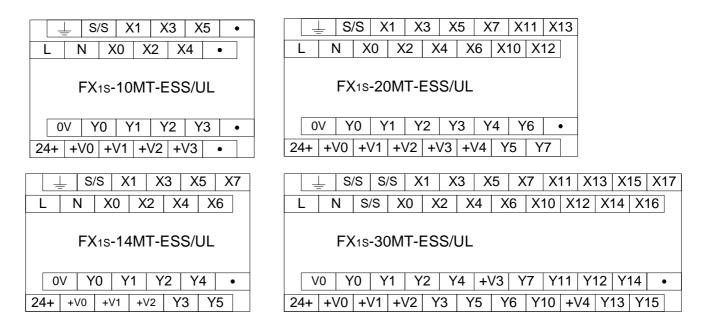
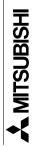

2.1 Relay Output Controllers

Figure 2.1: Terminal Layouts, Relay Outputs





2.2 Transistor Output Controllers

Figure 2.2: Terminal Layouts, Transistor Output

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics

3. Installation Notes

The installation of FX1s products has been designed to be safe and easy. When the products associated with this manual are used as a system or individually, they must be installed in a suitable enclosure. The enclosure should be selected and installed in accordance to the local and national standards.

3.1 Product Outline

Figure 3.1: Features of the FX1s PLC

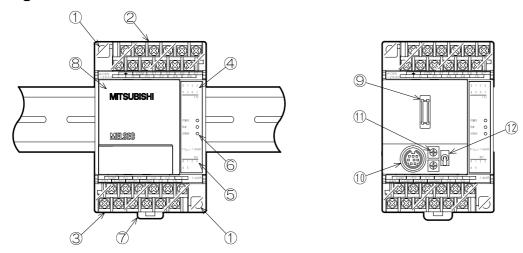


Table 3.1 : Feature Table

1	Direct Mounting Holes (4.5 mm Diameter)	7	DIN Rail Mounting Clip
2	Input Terminals (24V DC)	8	Top Cover
3	Output Terminals	9	Optional Equipment port (Memory Cassette, FX1N-232, 422, 485, 8AV, and CNV BDs, FX1N-5DM
4	Input LED Status Indicators	10	Programming Port
5	Output LED Status Indicators	11	Analog Trim Pots, D8030 read from VR1, the top trim pot. D8031 read from VR2, the bottom trim pot.
6	PLC Status Indicators(POWER, RUN, ERROR)	12	Run/Stop Switch

3.2 FX₁s RUN/STOP Control

RUN or STOP of the FX1s can be controlled by:

- The RUN/STOP switch mounted next to the programming port.
- **2**A standard input (X0 to X17) defined by the system parameters.
- **3** Remotely from a personal computer or other programming peripheral.

Note: The FX1s RUN/STOP switch works in parallel with the RUN-input terminal. Please refer to Table 3.2.

During remote operation the FX1s RUN/STOP status is determined by the most recently operated control.

E.g. If the RUN/STOP switch is in RUN and a remote STOP is made from a personal computer, the PLC can only be restarted with the RUN/STOP switch by first moving the switch to STOP and then back to RUN.

Figure 3.2: RUN/STOP Input Wiring Diagram

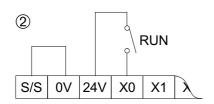


Table3.2: Run Status Table

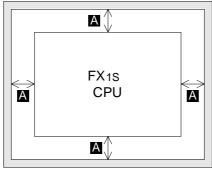
RUN/STOP SWITCH	2 RUN INPUT TERMINAL	FX1S MPU STATUS
✓	√	RUN
✓		RUN
		STOP
	✓	RUN

3.3 General Specifications

Table 3.3: General Specifications

ltem	Description			
Operating Temperature	0 to 55 °C (32 to 131 °F)			
Storage Temperature	-20 to 70 °C (-4 to 158 °F)			
Operating Humidity	35 to 85% Relative Humidity, No condensation			
storage Humidity	35 to 90% Relative Humidity, No condensation			
Vibration Resistance - Direct Mounting	Conforms to IEC 68-2-6; 10 - 57 Hz: 0.075 mm Half Amplitude 57 - 150 Hz: 9.8 m/s ² Acceleration Sweep Count for X, Y, Z: 10 times (80 min in each direction)			
Vibration Resistance - DIN rail Mounting	Conforms to IEC 68-2-6; 10 - 57 Hz: 0.035 mm Half Amplitude 57 - 150 Hz: 4.9 m/s ² Acceleration Sweep Count for X, Y, Z: 10 times (80 min in each direction)			
Shock Resistance	Conforms to IEC 68-2-27: 147m/s ² Acceleration, Action Time: 11 ms 3 times in each direction X, Y, and Z			
Noise Immunity	1000 Vp-p, 1microsecond, 30 - 100 Hz, tested by noise simulator			
Dielectric Withstand Voltage	1500 V AC > 1 min, tested between all points, terminals and ground			
Insulation Resistance	$5 \text{ M}\Omega$ > at 500 V DC, tested between power terminals and ground			
Ground	Class 3 (100 Ω or less)			

3.4 PLC Mounting Arrangements


To prevent a rise in temperature, mount the units to walls. Never mount them to the floor or ceiling of an enclosure.

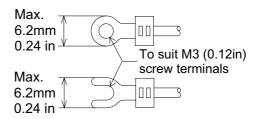
Caution

- Units should mot be installed in areas subject to the following conditions: excessive or conductive dust, corrosive or flammable gas, moisture or rain, excessive heat, regular impact shocks or excessive vibration.
- Take special care not to allow debris to fall inside the unit during installation e.g. cut wires, shavings etc. Once installation is complete remove the protective paper band: to prevent overheating.

Figure 3.3: PLC Mounting Diagram

A > 50mm(1.97 inches)

3.5 DIN Rail Mounting


Units can be snap mounted to 35mm DIN rail (DIN EN 50022). To release pull the spring loaded clips away from the rail and slide the unit off and up.

3.6 Termination of Screw Terminals

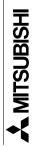

Cables terminating at a screw terminal of an FX_{2N} and FX_{0N} product should be fitted with insulated crimp terminals, see example shown. Terminals screws should be tightened to between 0.5 to 0.8 N·m. Screw terminals must be secured to prevent a loose connection from causing a malfunction.

Figure 3.4: Terminal Crimp Diagram

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics

4. Power Supply

4.1 Wiring Techniques

The wiring of FX_{1S} products has been designed to be safe and easy. If during the installation of these product or associated products concern is felt, please contact a professional electrician who is trained to the local and national standards applicable to the installation site.

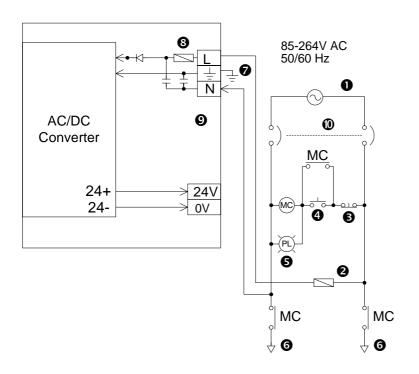
4.2 Wiring Cautions

- Do not run input signals in the same multicore cable as output signals or allow them to share the same wire.
- Do not lay I/O signal cables next to power cables or allow them to share the same trunking duct. Low voltage cables should be reliably separated or insulated with regard to high voltage cabling.
- Where I/O signal lines are used over an extended distance consideration for voltage drop and noise interference should be made.

4.3 Power Supply

When wiring AC supplies the "Live" cable should be connected to the "L" terminal and the "Neutral" cable should be connected to the "N" terminal. Do NOT connect the "Live" wire to the "N" terminal, the user might receive a dangerous shock on powerup.

4.4 Power Supply Characteristics

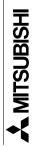

Table 4.1 : Power Requirements

	FX1s-10M	FX1S-14M	FX1s-20M	FX1s-30M
Power supply	100 ~ 240V AC +10%, -15%, 50-60Hz			
Max. allowable momentary power failure period	10ms; if less than 10ms, the PLC will continue operation. If 10ms or more, the PLC will shut down			
Fuse (size) rating	250V 1.0A 5φ×20mm (0.2×0.79 inches)			
In-rush current	100V AC - Max. 15A for 5ms 200V AC - Max. 25A for 5ms			
Power consumption *1	19W	19W	20W	21W

^{*1} Includes the input current (5 or 7mA per point).

Figure 4.1: Example Wiring

FX_{1S} Series


0	Power supply 100 ~ 240V AC +10% -15% 50 - 60 Hz				
9	Circuit protector or Fuse				
6	Emergency stop				
4	Power supply switch				
6	Power ON pilot indicator				
0	Power supply for loads				
0	Grounding resistor 100Ω or less (class3)				
8	Fuse				
0	Main unit				
0	Breaker				

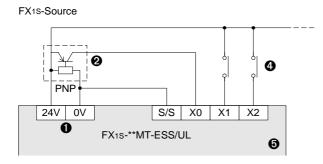
4.5 Earthing / Grounding

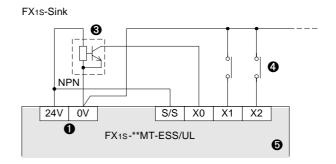
Use a cable at least 0.2mm^2 (AWG24) to ground equipment. Ground resistance must be less than 100Ω (class 3). Note that the ground cable must not be connected to the same ground as the power circuits. Grounding is recommended but if a proper ground cannot be provided the PC will still operate correctly without being grounded.

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics

5. Inputs

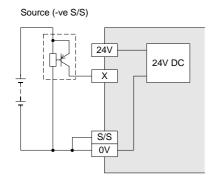
5.1 24V DC Input Specifications

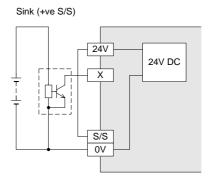

Table 5.1: FX1s Input Specifications


		FX1s Main Unit		
		X0 → X7	X10 → X17	
Input voltage		24V DC +/- 10%		
Input current		24V DC, 7mA	24V DC, 5mA	
Input switching	OFF → ON	>4.5mA	>3.5mA	
current	ON → OFF	<1.5mA		
Response time		10msec (default)		
Variable response	time	0 - 15msec for X000-X017 via use the FX ₁ s digital filter.		
Circuit isolation		Photocoupler		
Operation indication	on	LED is lit		

5.1.1 Typical wiring

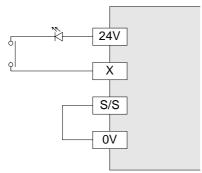
Figure 5.1: Input Wiring





1	24V DC Service Supply		
2	PNP Sensor		
3	NPN Sensor		
4	Input Device Contact		
5	FX1s Controller Main Body		

5.1.2 Input Circuit Connection

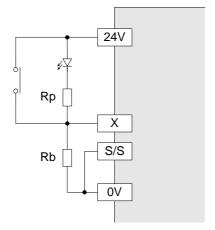

Figure 5.2: Input Circuit Diagrams (Source/Sink)

5.1.3 Diodes and Inputs Connected in Series

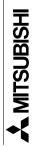
Figure 5.3: Diode Connection Diagram

Vdrop across the diode Max. 4V No more than 2 LEDs should be connected in series.

5.1.4 Resistors and Inputs Connected in Parallel


Parallel resistance Rp: $FX_{1S} = 15k\Omega$. If resistance Rp is less than the stated value, then add the Rb value using the Equation 1 calculation.

Alternatively; Current leakage: $FX_{1S} = 1.5mA$. If the current leakage is greater than the stated value, then add the Rb value using the equation 2 calculation.

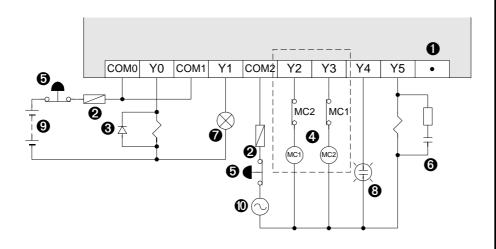

Figure 5.4: Parallel LED Diagram

Eqn 1:
$$Rb \le \frac{4Rp}{15 - Rp}$$

Eqn 2:
$$Rb \le \frac{6}{I - 1.5}$$

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics

6. Outputs


Table 6.1: Output Specifications

Description		Relay Output	Transistor Output	
Switched voltages (resistive load)		≤ 240V AC, ≤ 30V DC	5-30V DC	
Rated current / N points (resistive load)		2A/1 point, 8A/COM	0.5A/1 point, 0.8A/COM	
Max. Inductive Load		80VA, See table 6.2 for more details	12W/24V DC	
Max. Lamp Load (tung- sten load)		100W (1.17A/85V AC, 0.4A/ 250V AC)	0.9W/24V DC	
Minimum load		When supply voltage < 5V DC allow at least 2mA flow		
Response	OFF → ON	10ms	<0.2ms (100mA/24V DC); <5μs (Y0,Y1 only)	
time (approx.)	ON → OFF	10ms	<0.2ms (100mA/24V DC); <5μs (Y0,Y1 only)	
Circuit isolation		By Relay	PhotoCoupler	
Open circuit current leakage			0.1mA/30V DC	
Operation indication		LED is lit when coil is energized		

6.1 Relay Output Example

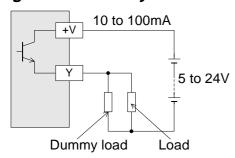
Figure 6.1: Typical Relay Wiring Diagram

0	Do not use this terminal			
2	Fuse			
8	Surge absorbing Diode.			
4	External Mechanical Interlock			
6	Emergency Stop			
6	Noise suppressor $0.1\mu F$ capacitor + $100-120\Omega$ resistorContactor			
0	Valve			
8	Incandescent Lamp			
0	DC Power Supply			
0	AC Power Supply			

6.1.1 Reliability Tests

The test results in Table 6.2 were gathered from a 1 sec ON/OFF test cycle. Please note that the over current induced by in-rush greatly reduces the relay contacts service life. The rated life for an inductive AC load such as a contactor or solenoid valve is 500,000 operations at 20VA.

Table 6.2: Relay Life Cycle Data


Description	20VA	35VA	80VA	
Load capacity	0.2A/100VAC	0.35A/100V AC	0.8A/100V AC	
Load Capacity	0.1A/200VAC	0.17A/240V AC	0.4A/240V AC	
Life of contact (cycles)	3,000,000	1,000,000	200,000	
Example load (Mitsubishi contactor)	S-K10 ~ S-K95	S-K100 ~ S-K150	S-K180,S-K400	

6.1.2 Response Times

OFF times increase as the load current decreases.

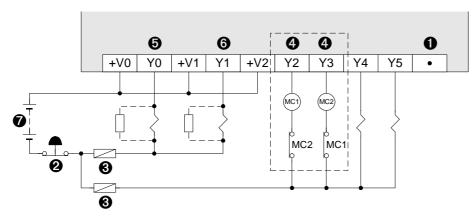

For improved response times use a 'dummy' resistor, see Figure 6.2. If a response time of 0.2 msec or better is required when using 'light loads' use a 'dummy' resistor and ensure the signal line has a current greater than 60mA/24V DC.

Figure 6.2: Dummy load

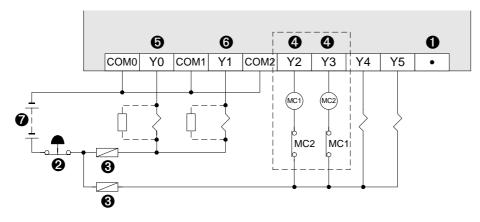
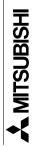

6.1.3 Transistor Output Examples

Figure 6.3: Transistor Output Wiring Diagram

0	Do not use this terminal		
2	Emergency Stop		
₿	3 Fuse		
External Mechanica Interlock			
6	Output Terminal Y0		
0	Output Terminal Y1		
7	DC Power Supply		

Figure 6.4: Japanese Model Transistor Output

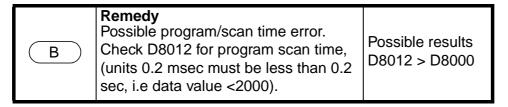


6.2 Applying safe loads

Ensure all loads are applied to the same side of each PLC output, see previous figures. Loads which should NEVER simultaneously operate (e.g. direction control of a motor), because of a safety critical situation, should not rely on the PLC's sequencing alone. Mechanical interlocks MUST be fitted to all safety critical circuits. (See preceding figure.)

1	Introduction
2	Terminal Layouts
3	Installation Notes
4	Power Supply
5	Inputs
6	Outputs
7	Diagnostics

7. Diagnostics


7.1 Preliminary Checks

POWER RUN ERROR	Check power supply, ground and I/O cables are wired correctly.
POWER ■ RUN □ ERROR □	Turn the power supply on. Check the power LED is lit. Down load a small test program into the PLC. Verify the program to ensure it has been written to the PLC correctly. Using the programming device forcibly turn ON/OFF each output. Check the output LEDs for operation.
POWER ■ RUN ■ ERROR □	Put the PLC into RUN. Check the RUN LED is lit. Check the previously down loaded program works correctly. Once all checks are complete take the PLC out of run and turn OFF the power supply.
	During this testing stage take extreme care not to touch any live or hazard- ous parts.

7.1.1 ERROR LED ON (CPU ERROR)

POWER ■ RUN □ ERROR ■	Fault Power OFF,ON	Reset PLC. Power	Possible results	LED OFF	Has the memory cassette been installed or removed while the units has still been powered?
		and trigger RUN in-		LED is lit	A

	Remedy		LED is lit	В		
	Power OFF		LED IS III			
A	Discon- nect earth/ ground ter- minal Power ON	Possible results	LED is flash-ing	Check for programming error. Ensure the earth/ground cable is correctly rewired. PLC M/C PLC M/C PLC M/C PLC M/C PLC M/C		

7.2 Common Errors

- Corroded contact points at some point in an I/O line.
- An I/O device has been used outside its specified operating range.
- An input signal occurs in a shorter time period that taken by one program scan.

7.3 Maintenance

- Check interior temperature of the panel.
- Check panel air filters if fitted.
- Check for loosening of terminals or mounting facilities (due to vibration).

7.4 Operation and Error Flags

M8004 (ref. 8004)	Error occurance (ON when M8060-7 are ON)		
M8035	Forced RUN mode		
M8036	Forced RUN signal		
M8037	Forced STOP signal		
M8039 (ref. D8039)	Constant scan mode		

M8061 (ref. D8061)	PC hardware error
M8063 (ref. D8063)	Parallel link error
M8064 (ref. D8064)	Parameter error
M8065 (ref. D8065, D8069)	Syntax error
M8066 (ref. D8066, D8069)	Program (circuit) error
M8067 (ref. D8067, D8069)	Program execution error
M8068 (ref. D8068)	Execution error latch

7.5 Error Registers

D8000 (default 200msec)	Watchdog timer
D8001	PC version
D0001	22100 = FX _{1S} Version 1.00 22 = FX _{1S} , 100 = Version 1.00
D8002	Memory capacity
D0002	0002=2K steps
D8003	Memory type
02	H=EEPROM protect switch OFF
	H=EEPROM protect switch ON
10	H=MPU memory
D8004	Error flag number
D0004	8060=M8060, (8060-8068)
D8007	Number of momentary power failures - reset on full power OFF

D8061	Error code for PLC hardware error
D8063	Error code for parallel link fault
D8064	Parameter error code
D8065	Syntax error code
D8066	Program (circuit) error code
D8067	Program execution error code
D8068	Latched step number of execution error
D8069	Step number of errors associated with error flags M8065-M8067

7.6 Error Codes

D8061		Check cable connections
	0000	No error
	6101	RAM error
	6102	Operation circuit error
	6103	I/O bus error (M8069 = ON)
D806	62	Check the programmer / PC connections
	0000	No error
	6201	Parity/overrun/framing error
	6202	Character error
	6203	Data sum check error
	6204	Data format error
	6205	Command error

D8063		Check both power and communications connections
	0000	No error
	6301	Parity/overrun/framing error
	6302	Character error
	6303	Data sum check error
	6304	Data format error
	6305	Command error
	6306	Watchdog timer error

7.7 Instruction List

Table 7.1: Numerically sorted

		0	1	2	3	4	5	6	7	8	9
000	PROGRAM FLOW	CJ	CALL	SRET	IRET	EI	DI	FEND	WDT	FOR	NEXT
010	TRANSFERS, COMP	CMP	ZCP	MOV			BMOV			BCD	BIN
020	+-×÷, LOGICS	ADD	SUB	MUL	DIV	INC	DEC	WAND	WOR	WXOR	
030	SHIFT					SFTR	SFTL			SFWR	SFRD
040	DATA OPERATION 1	ZRST	DECO	ENCO							
050	HIGH-SPEED	REF		MTR	HSCS	HSCR		SPD	PLSY	PWM	PLSR
060	HANDY INSTR. 1	IST		ABSD	INCD			ALT	RAMP		
070	FX I/O DEVICES			DSW		SEGL					
080	FX SER DEVICES	RS	PRUN	ASCI	HEX	CCD	VRRD	VRSC		PID	
150	POSITIONING						ABS	ZRN	PLSV	DRVI	DRVA
160	REAL TIME CLOCK	TCMP	TZCP	TADD	TSUB			TRD	TWR		HOUR
		1					1	I		I	
220						LD=	LD>	LD<		LD≠	LD≤
230	IN-LINE COMPARE	LD≥		AND=	AND>	AND<		AND≠	AND≤	AND≥	
240		OR=	OR>	OR<		OR≠	OR≤	OR≥			

Table: 7.2 Alphabetically sorted

	Symbol	FNC No.	D	Р
	ABS	155		
	ABSD	062		
Α	ADD	020		
^	ALT	066		
	AND□	232-238		
	ASCI	082		
	BCD	018		
В	BIN	019		
	BMOV	015		
	CALL	001		
С	CCD	084		
	CJ	000		
	CMP	010		

	Symbol	FNC No.	D	Р
	DEC	025		
	DECO	041		
	DI	005		
D	DIV	023		
	DRVA	159		
	DRVI	158		
	DSW	072		
E	EI	004		
=	ENCO	042		
F	FEND	006		
	FOR	008		

	Symbol	FNC No.	D	Р
	HEX	083		
Н	HSCR	054		
	HSCS	053		
	INC	024		
	INCD	063		
1	INT	129		
	IRET	003		
	IST	060		
L	LD□	224-230		
	MOV	012		
M	MTR	052		
	MUL	022		
N	NEXT	009		
0	OR□	240-246		

	Symbol	FNC No.	D	Р
	PID	088		
	PLSR	059		
Р	PLSV	157		
	PLSY	057		
	PRUN	081		
	PWM	058		
	RAMP	067		
R	REF			
	RS	080		
	SEGL	074		
s	SFRD	039		
3	SFTL	035		
	SFTR	034		

	Symbol	FNC No.	D	Р
	SFWR	038		
	SIN	130		
s	SPD	056		
3	SQR	048		
	SRET	002		
	SUB	021		
	TADD	162		
	TCMP	160		
T	TRD	166		
'	TSUB	163		
	TWR	167		
	TZCP	161		

	Symbol	FNC No.	D	Р
v	VRRD	085		
	VRSC	086		
	WAND	026		
w	WDT	007		
**	WOR	027		
	WXOR	028		
z	ZCP	011		
	ZRN	156		
	ZRST	040		

7.8 Device List

Devic	е Туре	Description	
Program capacity		2K steps by FX1s internal EEPROM or	
		2K steps by FX _{1N} -EEPROM-8L	
Input (X) relay		X0 - X17 (16 pts)	(X + Y) ≤ 30 pts Max.
Output (Y) relay		Y0 - Y15 (14 pts)	- (X + 1) ≤ 50 pts Max.
A '1'	General Auxiliary Relays	M0-M383 (384 pts)	
Auxiliary relay (512 pnts + 256 pts)	Latched Relays	M384-M511 (128 pts)	
,	Special function	M8000-M8255 (256 pts)	
State relay	Initial State Relay	S0-S9 (10 pts), same as latched state relay	
(128 pts)	Latched State Relay	S10-S127 (118 pts)	
	100 msec	T0-T62 (63 pts)	
Timer (64 pts)	10 msec	If M8028 is On, T32 - T62 are 10ms timers (31 pts)	
	1 msec	T63 (1 pt)	

Device Type		Description	
	General Counter	C0-C15 (16 pts)	
Counter (256 pts)	Latched Counter	C16-C31 (16 pts)	
	High Speed Counter	C235-C255	
	General Use Register	D0-D127 (128 pts)	
	Latched Register	D128-D255 (128 pts)	
Data register (1500 pts, + 256 pts)	File Register	D1000-D2499 (1500 pts)	
	Diagnostic Register	D8000-D8255 (256 pts)	
	Index	V0-V7, Z0-Z7 (16 pts)	
Pointers	Pointer	P0-P63 (64 pts)	
Fointers	Interupt Pointer	100□ - 150□ (6 pts)	
Nest Level		N0 - N7 (8 pts)	
Numbers	16 bit	32 bit	
K	K -32,768 to 32,767 -2,147,483,648 to 2,147,483,647		
H 0 to FFFFH 0 to FFFFFFH		0 to FFFFFFFH	
Float	-	0, $\pm 1.175 \times 10^{-38}$ to $\pm 3.403 \times 10^{38}$	

FX1s Series Programmable Contro	ollers
---------------------------------	--------

Under no circumstances will MITSUBISHI ELECTRIC be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.

All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. MITSUBISHI ELECTRIC will accept no responsibility for actual use of the product based on these illustrative examples.

Owing to the very great variety in possible application of this equipment, you must satisfy yourself as to its suitability for your specific application.

HARDWARE MANUAL

FX1S SERIES PROGRAMMABLE CONTROLLERS

HEAD OFFICE: MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100-8310 TELEX: J24532 CABLE MELCO TOKYO HIMEJI WORKS: 840, CHIYODA CHO, HIMEJI, JAPAN

JY992D83901B (MEE0004) Effective Apr. 2000 Specification are subject to change without notice.